Fvaluating Past Returns

More Machine Learning

Kerry Back, JGSB, Rice University

https://colab.research.google.com/github/kerryback/mgmt638/blob/main/notebooks/10-attribution.ipynb

Outline

1. Evaluating without benchmarking - Sharpe ratios and drawdowns

2. Naive benchmarking
3. Benchmarking - alphas and information ratios
4. Attribution analysis - alphas and betas and information ratios

Data

e Monthly FMAGX returns from Yahoo Finance (FMAGX = Fidelity Magellan)
e Market return from French's data library

e Fama-French factors and momentum from French's data library

Monthly returns

import yfinance as yf

ticker = "FMAGX"

price = yf.download(ticker, start=1970)["Adj Close"]
price _monthly = price.resample("M").last()
price_monthly.index = price _monthly.index.to period("M")
return_monthly = price_monthly.pct change().dropna()

[***>I<************>I<****1@@%%**********************] 1 O-F 1 Completed

Monthly risk-free rates from French’s data library

from pandas_datareader import DataReader as pdr
fama_french = pdr("F-F_Research Data 5 Factors 2x3", "famafrench", start=1970
rf = fama_french["RF"]

Evaluating without benchmarking

Sharpe ratio

import numpy as np

rprem = 12 * (return_monthly - rf).mean()
stdev = np.sqrt(12) * return_monthly.std()
sharpe = rprem / stdev

print(f"Annualized Sharpe ratio is {sharpe:.2%}")

Annualized Sharpe ratio is 46.21%

Drawdowns

e A drawdown is how much you've lost since the previous peak value.
e |t's another way to represent risk.

e We'll use the daily price data.

import matplotlib.pyplot as plt
import matplotlib.ticker as mtick

import seaborn as sns
sns.set _style("whitegrid")
colors = sns.color_palette()

fig, ax = plt.subplots()

price_max = price.expanding().max()

drawdown = 100 * (price - price_max) / price_max
drawdown.plot(ax=ax)

ax.yaxis.set_major_ formatter(mtick.PercentFormatter())
plt.show()

0%
-10%

-20%

-30%

-40%

-50%
-60%

SN SR ﬁﬁg ﬁﬁb ﬁfﬂ ﬁﬁa %ﬁg ﬁﬂb
Date

fig, axl = plt.subplots()

ax2 = axl.twinx()
ax2.set_yscale("log")
drawdown.plot(ax=ax1)

cumulative_return = price / price.iloc[9]
cumulative_return.plot(ax=ax2, c=colors[1])

axl.set xlabel('Date')
axl.set _ylabel('Drawdown', color=colors[0])
ax2.set_ylabel('Cumulative return (log scale)', color=colors[1])

axl.yaxis.set_major_ formatter(mtick.PercentFormatter())
plt.show()

0% -
-10% -

-20% -

-30% -

Drawdown

:‘1[]

-40% -

umulative return (log sca

ﬂ
-l

(

-50% -

Naive Benchmarking

Did you beat the benchmark?

Compute returns in excess of the benchmark and the mean excess return.

How risky are these excess returns?

The standard deviation of return in excess of the benchmark is called tracking error.
Reward to risk ratio = mean excess return / tracking error

Naive = "don't adjust for beta"

Market return

mkt = fama_french["Mkt-RF"] + fama_french["RF"]

Mean, risk (tracking error) and reward-to-risk

mean = 12 * (return_monthly - mkt).mean()
track_error = np.sqrt(12) * (return_monthly - mkt).std()
reward_to risk = mean / stdev

print(f"annualized mean return in excess of market is {mean:.2%}")
print(f"annualized tracking error is {track_error:.2%}")
print(f"annualized reward-to-risk ratio is {reward_to risk:.2%}")

annualized mean return in excess of market is ©0.37%
annualized tracking error is 7.29%
annualized reward-to-risk ratio is 2.02%

Benchmarking

Alpha
e Run the regression
r—ry=o+p(ry,—rf)+e¢

e where 1, = benchmark return

e Rearrange:
r— [BFb—i—(l—ﬁ)rf] —a+e

e So, a + € is the excess return over a beta-adjusted benchmark. It is called the
active return.
* The beta-adjusted benchmark 7;, + (1 — B)r has the same beta as 7.

a is the mean active return.

Alpha and mean-variance efficiency

e We can improve on a benchmark by adding some of another return 7 if and only if
its alpha relative to the benchmark is positive.

e We can improve by shorting 7 if its alpha is negative.

e Cannot improve on benchmark < a =0

Information ratio

e The risk of the active return is the risk of the regression residual €
e Reward to risk ratio a/std dev of ¢ is called the information ratio.

e Information ratio is the most important statistic for evaluating performance relative
to a benchmark.

Code

Use statsmodels ols function to run regressions in python.
Define model and fit.

Fitted object has .summary() method, .params attribute and others.

Residual standard deviation is square root of .mse_resid
We'll use the market as the benchmark

import pandas as pd
import statsmodels.formula.api as smf

df = pd.concat((return_monthly, mkt, rf), axis=1).dropna()
df.columns = ["ret", "mkt", "rf"]
df[["ret_rf", "mkt rf"]] = df[["ret", "mkt"]].subtract(df.rf, axis=0)

result = smf.ols("ret rf ~ mkt_rf", df).fit()

result.summary()

OLS Regression Results

Dep. Variable: ret_rf R-squared: 0.847
Model: OLS Adj. R-squared: 0.847
Method: Least Squares F-statistic: 2892.
Date: Mon, 27 Nov 2023 Prob (F-statistic): 5.26e-215
Time: 13:54:10 Log-Likelihood: 1287.2
No. Observations: 524 AIC: -2570.
Df Residuals: 522 BIC: -2562.
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t|] [0.025 0.975]
Intercept -0.0002 0.001 -0.227 0.820 -0.002 0.002
mkt_rf 1.0765 0.020 53.774 0.000 1.037 1.116
Omnibus: 642.619 Durbin-Watson: 2.069
Prob(Omnibus): 0.000 Jarque-Bera (JB): 118829.986
Skew: -5.621 Prob(JB): 0.00
Kurtosis: 75912 Cond. No. 22.0

alpha = 12 * result.params["Intercept"]
resid stdev = np.sqrt(12 * result.mse resid)
info ratio = alpha / resid stdev

print(f"The annualized information ratio is {info_ratio:.2%}")

The annualized information ratio is -3.48%

Plotting

e Plot the compound returns (1 +r1)(1 +7r2) -+ (7 4+ 70)

e Plot the compounded beta-adjusted benchmark returns

e Plot the compounded active returns

e Gives a visual of whether returns were earned from the benchmark or from active

return.

beta = result.params["mkt_rf"]
beta_adjusted bmark = beta*df.mkt + (1-beta)*df.rf
active = df.ret - beta adjusted bmark

(1+df.ret).cumprod().plot(label="total return", logy=True)

(1+beta_adjusted bmark).cumprod().plot(label="beta-adjusted benchmark”, logy=
(1+active).cumprod().plot(label="active return”, logy=True)
plt.legend()

plt.show()
— total return
10 - — beta-adjusted benchmark

— gctive return

10

10

1984 1989 1994 1999 2004 2009 2014 2019
Meate

Attribution Analysis

Factors and attribution

e |t is generally agreed that there are portfolio strategies ("factors” or "styles") that
earn risk premia that are not explained by the CAPM.
= Value, momentum, profitability, ...
e An institution evaluating a manager's results will look to see if any common factors
are responsible for the results by running regressions on the benchmark and

factors.

¢ In other words, we ask whether the returns can be attributed to common factors.

Alphas and information ratios again

e For simplicity, consider a single factor or style with return r5. Suppose it is a long-
minus-short return.

e We run the regression
r—ry=o+ Pi(ry —rs) + Bars +€

e We can rearrange as
r— |Biry + (1= Bi)rs+ Bors| =a+¢

e The return in square braces is a beta and factor adjusted benchmark.
e The alpha and the information ratio have the same meaning as before, except that

now we are also adjusting for factor exposure.

Data

e Fama-French factors
= SMB = small minus big (size factor)

= HML = high book-to-market minus low book-to-market (value factor)
= CMA = conservative minus agressive (investment rate factor)
= RMW = robust minus weak (profitability factor)
e Momentum
= UMD = up minus down
e All from French's data library

fama_french.head(3)

Mkt-RF SMB HML RMW CMA RF

Date
1970-01 -0.0810 0.0312 0.0313 -0.0172 0.0384 0.0060
1970-02 0.0513 -0.0276 0.0393 -0.0229 0.0276 0.0062
1970-03 -0.0106 -0.0241 0.0399 -0.0100 0.0429 0.0057

umd = pdr("F-F_Momentum_Factor", "famafrench", start=1970)[0]/100
umd.columns = ["UMD"]
umd.head(3)

UMD

Date

1970-01 0.0060

1970-02 0.0023

1970-03 -0.0036

data = pd.concat((fama_french, umd, df), axis=1).dropna()
result = smf.ols("ret rf ~ mkt rf + SMB + HML + RMW + CMA + UMD", data).fit()
result.summary()

OLS Regression Results

Dep. Variable: ret_rf R-squared: 0.854
Model: OLS Adj. R-squared: 0.852
Method: Least Squares F-statistic: 502.5
Date: Mon, 27 Nov 2023 Prob (F-statistic): 4.68e-212
Time: 13:54:11 Log-Likelihood: 1298.6
No. Observations: 524 AIC: -2583.
Df Residuals: 517 BIC: -2553.
Df Model: 6
Covariance Type: nonrobust
coef std err t P>|t] [0.025 0.975]
Intercept -9.048e-05 0.001 -0.096 0.924 -0.002 0.002
mkt_rf 1.0729 0.022 48.365 0.000 1.029 1.116
SMB -0.0638 0.034 -1.860 0.063 -0.131 0.004

HML -0.0509 0.041 -1.229 0.220 -0.132 0.030

RMW 0.0332 0043 0.778 0437 -0.051 0.117

