
Evaluating Past Returns
More Machine Learning
Kerry Back, JGSB, Rice University

Open in ColabOpen in Colab

https://colab.research.google.com/github/kerryback/mgmt638/blob/main/notebooks/10-attribution.ipynb

Outline
1. Evaluating without benchmarking - Sharpe ratios and drawdowns
2. Naive benchmarking
3. Benchmarking - alphas and information ratios
4. Attribution analysis - alphas and betas and information ratios

Data
Monthly FMAGX returns from Yahoo Finance (FMAGX = Fidelity Magellan)
Market return from French's data library
Fama-French factors and momentum from French's data library

Monthly returns

In [1]: import yfinance as yf

ticker = "FMAGX"
price = yf.download(ticker, start=1970)["Adj Close"]
price_monthly = price.resample("M").last()
price_monthly.index = price_monthly.index.to_period("M")
return_monthly = price_monthly.pct_change().dropna()

[*********************100%%**********************] 1 of 1 completed

Monthly risk-free rates from French's data library

In [2]: from pandas_datareader import DataReader as pdr
fama_french = pdr("F-F_Research_Data_5_Factors_2x3", "famafrench", start=1970
rf = fama_french["RF"]

Evaluating without benchmarking

Sharpe ratio

In [3]: import numpy as np

rprem = 12 * (return_monthly - rf).mean()
stdev = np.sqrt(12) * return_monthly.std()
sharpe = rprem / stdev

print(f"Annualized Sharpe ratio is {sharpe:.2%}")

Annualized Sharpe ratio is 46.21%

Drawdowns
A drawdown is how much you've lost since the previous peak value.
It's another way to represent risk.
We'll use the daily price data.

In [4]: import matplotlib.pyplot as plt
import matplotlib.ticker as mtick

import seaborn as sns
sns.set_style("whitegrid")
colors = sns.color_palette()

In [5]: fig, ax = plt.subplots()
price_max = price.expanding().max()
drawdown = 100 * (price - price_max) / price_max
drawdown.plot(ax=ax)
ax.yaxis.set_major_formatter(mtick.PercentFormatter())
plt.show()

In [6]: fig, ax1 = plt.subplots()

ax2 = ax1.twinx()
ax2.set_yscale("log")
drawdown.plot(ax=ax1)

cumulative_return = price / price.iloc[0]
cumulative_return.plot(ax=ax2, c=colors[1])

ax1.set_xlabel('Date')
ax1.set_ylabel('Drawdown', color=colors[0])
ax2.set_ylabel('Cumulative return (log scale)', color=colors[1])

ax1.yaxis.set_major_formatter(mtick.PercentFormatter())
plt.show()

Naive Benchmarking

Did you beat the benchmark?
Compute returns in excess of the benchmark and the mean excess return.
How risky are these excess returns?
The standard deviation of return in excess of the benchmark is called tracking error.
Reward to risk ratio = mean excess return / tracking error
Naive = "don't adjust for beta"

Market return

In [7]: mkt = fama_french["Mkt-RF"] + fama_french["RF"]

Mean, risk (tracking error) and reward-to-risk

In [8]: mean = 12 * (return_monthly - mkt).mean()
track_error = np.sqrt(12) * (return_monthly - mkt).std()
reward_to_risk = mean / stdev

print(f"annualized mean return in excess of market is {mean:.2%}")
print(f"annualized tracking error is {track_error:.2%}")
print(f"annualized reward-to-risk ratio is {reward_to_risk:.2%}")

annualized mean return in excess of market is 0.37%
annualized tracking error is 7.29%
annualized reward-to-risk ratio is 2.02%

Benchmarking

Alpha
Run the regression

where benchmark return
Rearrange:

So, is the excess return over a beta-adjusted benchmark. It is called the
active return.
The beta-adjusted benchmark has the same beta as .

 is the mean active return.

r − rf = α + β(rb − rf) + ε

rb =

r − [βr̄b + (1 − β)rf] = α + ε

α + ε

βr̄b + (1 − β)rf r

α

Alpha and mean-variance e�ciency
We can improve on a benchmark by adding some of another return if and only if
its alpha relative to the benchmark is positive.
We can improve by shorting if its alpha is negative.
Cannot improve on benchmark

r

r

⇔ α = 0

Information ratio
The risk of the active return is the risk of the regression residual
Reward to risk ratio is called the information ratio.
Information ratio is the most important statistic for evaluating performance relative
to a benchmark.

ε

α/std dev of ε

Code
Use statsmodels ols function to run regressions in python.
Define model and fit.
Fitted object has .summary() method, .params attribute and others.
Residual standard deviation is square root of .mse_resid
We'll use the market as the benchmark

In [9]: import pandas as pd
import statsmodels.formula.api as smf

df = pd.concat((return_monthly, mkt, rf), axis=1).dropna()
df.columns = ["ret", "mkt", "rf"]
df[["ret_rf", "mkt_rf"]] = df[["ret", "mkt"]].subtract(df.rf, axis=0)

result = smf.ols("ret_rf ~ mkt_rf", df).fit()

OLS Regression Results
Dep. Variable: ret_rf R-squared: 0.847

Model: OLS Adj. R-squared: 0.847

Method: Least Squares F-statistic: 2892.

Date: Mon, 27 Nov 2023 Prob (F-statistic): 5.26e-215

Time: 13:54:10 Log-Likelihood: 1287.2

No. Observations: 524 AIC: -2570.

Df Residuals: 522 BIC: -2562.

Df Model: 1

Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]

Intercept -0.0002 0.001 -0.227 0.820 -0.002 0.002

mkt_rf 1.0765 0.020 53.774 0.000 1.037 1.116
Omnibus: 642.619 Durbin-Watson: 2.069

Prob(Omnibus): 0.000 Jarque-Bera (JB): 118829.986

Skew: -5.621 Prob(JB): 0.00

Kurtosis: 75.912 Cond. No. 22.0

In [10]: result.summary()

Out[10]:

In [11]: alpha = 12 * result.params["Intercept"]
resid_stdev = np.sqrt(12 * result.mse_resid)
info_ratio = alpha / resid_stdev

print(f"The annualized information ratio is {info_ratio:.2%}")

The annualized information ratio is -3.48%

Plotting
Plot the compound returns
Plot the compounded beta-adjusted benchmark returns
Plot the compounded active returns
Gives a visual of whether returns were earned from the benchmark or from active
return.

(1 + r1)(1 + r2) ⋯ (r + rn)

In [12]: beta = result.params["mkt_rf"]
beta_adjusted_bmark = beta*df.mkt + (1-beta)*df.rf
active = df.ret - beta_adjusted_bmark

(1+df.ret).cumprod().plot(label="total return", logy=True)
(1+beta_adjusted_bmark).cumprod().plot(label="beta-adjusted benchmark", logy=T
(1+active).cumprod().plot(label="active return", logy=True)
plt.legend()
plt.show()

Attribution Analysis

Factors and attribution
It is generally agreed that there are portfolio strategies ("factors" or "styles") that
earn risk premia that are not explained by the CAPM.

Value, momentum, profitability, ...
An institution evaluating a manager's results will look to see if any common factors
are responsible for the results by running regressions on the benchmark and
factors.
In other words, we ask whether the returns can be attributed to common factors.

Alphas and information ratios again
For simplicity, consider a single factor or style with return . Suppose it is a long-
minus-short return.
We run the regression

We can rearrange as

The return in square braces is a beta and factor adjusted benchmark.
The alpha and the information ratio have the same meaning as before, except that
now we are also adjusting for factor exposure.

rs

r − rf = α + β1(rb − rf) + β2rs + ε

r − [β1rb + (1 − β1)rf + β2rs] = α + ε

Data
Fama-French factors

SMB = small minus big (size factor)
HML = high book-to-market minus low book-to-market (value factor)
CMA = conservative minus agressive (investment rate factor)
RMW = robust minus weak (profitability factor)

Momentum
UMD = up minus down

All from French's data library

Mkt-RF SMB HML RMW CMA RF

Date

1970-01 -0.0810 0.0312 0.0313 -0.0172 0.0384 0.0060

1970-02 0.0513 -0.0276 0.0393 -0.0229 0.0276 0.0062

1970-03 -0.0106 -0.0241 0.0399 -0.0100 0.0429 0.0057

In [13]: fama_french.head(3)

Out[13]:

UMD

Date

1970-01 0.0060

1970-02 0.0023

1970-03 -0.0036

In [14]: umd = pdr("F-F_Momentum_Factor", "famafrench", start=1970)[0]/100
umd.columns = ["UMD"]
umd.head(3)

Out[14]:

OLS Regression Results
Dep. Variable: ret_rf R-squared: 0.854

Model: OLS Adj. R-squared: 0.852

Method: Least Squares F-statistic: 502.5

Date: Mon, 27 Nov 2023 Prob (F-statistic): 4.68e-212

Time: 13:54:11 Log-Likelihood: 1298.6

No. Observations: 524 AIC: -2583.

Df Residuals: 517 BIC: -2553.

Df Model: 6

Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]

Intercept -9.048e-05 0.001 -0.096 0.924 -0.002 0.002

mkt_rf 1.0729 0.022 48.365 0.000 1.029 1.116

SMB -0.0638 0.034 -1.860 0.063 -0.131 0.004

HML -0.0509 0.041 -1.229 0.220 -0.132 0.030

RMW 0.0332 0.043 0.778 0.437 -0.051 0.117

In [15]: data = pd.concat((fama_french, umd, df), axis=1).dropna()
result = smf.ols("ret_rf ~ mkt_rf + SMB + HML + RMW + CMA + UMD", data).fit()
result.summary()

Out[15]:

