Evaluating Past Returns

More Machine Learning

Kerry Back, JGSB, Rice University

CO Open in Colab

Outline

- 1. Evaluating without benchmarking Sharpe ratios and drawdowns
- 2. Naive benchmarking
- 3. Benchmarking alphas and information ratios
- 4. Attribution analysis alphas and betas and information ratios

Data

- Monthly FMAGX returns from Yahoo Finance (FMAGX = Fidelity Magellan)
- Market return from French's data library
- Fama-French factors and momentum from French's data library

Monthly returns

<

>

In [1]: import yfinance as yf

```
ticker = "FMAGX"
price = yf.download(ticker, start=1970)["Adj Close"]
price_monthly = price.resample("M").last()
price_monthly.index = price_monthly.index.to_period("M")
return_monthly = price_monthly.pct_change().dropna()
```

Monthly risk-free rates from French's data library

In [2]: from pandas_datareader import DataReader as pdr fama_french = pdr("F-F_Research_Data_5_Factors_2x3", "famafrench", start=1970 rf = fama_french["RF"]

Evaluating without benchmarking

Sharpe ratio


```
In [3]: import numpy as np
```

```
rprem = 12 * (return_monthly - rf).mean()
stdev = np.sqrt(12) * return_monthly.std()
sharpe = rprem / stdev
```

print(f"Annualized Sharpe ratio is {sharpe:.2%}")

Annualized Sharpe ratio is 46.21%

Drawdowns

- A drawdown is how much you've lost since the previous peak value.
- It's another way to represent risk.
- We'll use the daily price data.

In [4]: import matplotlib.pyplot as plt
import matplotlib.ticker as mtick

```
import seaborn as sns
sns.set_style("whitegrid")
colors = sns.color_palette()
```


< >

```
In [6]: fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax2.set_yscale("log")
drawdown.plot(ax=ax1)
cumulative_return = price / price.iloc[0]
cumulative_return.plot(ax=ax2, c=colors[1])
ax1.set_xlabel('Date')
ax1.set_ylabel('Drawdown', color=colors[0])
ax2.set_ylabel('Cumulative return (log scale)', color=colors[1])
```

```
ax1.yaxis.set_major_formatter(mtick.PercentFormatter())
plt.show()
```


Naive Benchmarking

- Did you beat the benchmark?
- Compute returns in excess of the benchmark and the mean excess return.
- How risky are these excess returns?
- The standard deviation of return in excess of the benchmark is called tracking error.
- Reward to risk ratio = mean excess return / tracking error
- Naive = "don't adjust for beta"

Market return

In [7]: mkt = fama_french["Mkt-RF"] + fama_french["RF"]

Mean, risk (tracking error) and reward-to-risk

```
In [8]: mean = 12 * (return_monthly - mkt).mean()
track_error = np.sqrt(12) * (return_monthly - mkt).std()
reward_to_risk = mean / stdev
```

```
print(f"annualized mean return in excess of market is {mean:.2%}")
print(f"annualized tracking error is {track_error:.2%}")
print(f"annualized reward-to-risk ratio is {reward_to_risk:.2%}")
```

```
annualized mean return in excess of market is 0.37% annualized tracking error is 7.29% annualized reward-to-risk ratio is 2.02%
```

Benchmarking

<

>

Alpha

• Run the regression

$$r-r_f=lpha+eta(r_b-rf)+arepsilon$$

- where $r_b =$ benchmark return
- Rearrange:

$$r-\left[etaar{r}_b+(1-eta)r_f
ight]=lpha+arepsilon$$

- So, $\alpha + \varepsilon$ is the excess return over a beta-adjusted benchmark. It is called the active return.
- The beta-adjusted benchmark $etaar{r}_b+(1-eta)r_f$ has the same beta as r.
- α is the mean active return.

Alpha and mean-variance efficiency

- We can improve on a benchmark by adding some of another return *r* if and only if its alpha relative to the benchmark is positive.
- We can improve by shorting r if its alpha is negative.
- Cannot improve on benchmark $\, \Leftrightarrow lpha = 0$

Information ratio

- The risk of the active return is the risk of the regression residual arepsilon
- Reward to risk ratio $lpha/\mathrm{std}\,\mathrm{dev}\,\mathrm{of}\,arepsilon$ is called the **information ratio**.
- Information ratio is the most important statistic for evaluating performance relative to a benchmark.

Code

- Use statsmodels ols function to run regressions in python.
- Define model and fit.
- Fitted object has .summary() method, .params attribute and others.
- Residual standard deviation is square root of .mse_resid
- We'll use the market as the benchmark

```
In [9]: import pandas as pd
import statsmodels.formula.api as smf
df = pd.concat((return_monthly, mkt, rf), axis=1).dropna()
df.columns = ["ret", "mkt", "rf"]
df[["ret_rf", "mkt_rf"]] = df[["ret", "mkt"]].subtract(df.rf, axis=0)
result = smf.ols("ret_rf ~ mkt_rf", df).fit()
```

In [10]: result.summary()

Out[10]:	OLS Regression Results							
	Dep. \	/ariable:		ret_r	ſ	R-squ	ared:	0.847
		Model:		OL	S Ad	lj. R-squ	ared:	0.847
		Method:	Lea	Least Squares		F-sta	2892.	
		Date:	Mon, 27	7 Nov 202	3 Prob	o (F-stat	5.26e-215	
	Time:			13:54:1	0 Lo	g-Likelił	1287.2	
	No. Obser	vations:		524 522			AIC:	-2570. -2562.
	Df Re	esiduals:					BIC:	
	Di	Model:			1			
	Covariance Type: coef			nonrobus	st			
			f std err	t	P> t	[0.025	0.975]
	Intercept	-0.0002	0.001	-0.227	0.820	-0.002	0.002	2
	mkt_rf	1.0765	0.020	53.774	0.000	1.037	1.116	5
	Om	nibus:	642.619	Durbin-	Watson	:	2.069	
	Prob(Omr	ibus):	0.000	Jarque-B	era (JB)	: 1188	29.986	
		Skew:	-5.621	P	rob(JB)	:	0.00	
	Ku	rtosis:	75.912	C	ond. No).	22.0	

 $\langle \rangle$

```
In [11]: alpha = 12 * result.params["Intercept"]
    resid_stdev = np.sqrt(12 * result.mse_resid)
    info_ratio = alpha / resid_stdev
```

print(f"The annualized information ratio is {info_ratio:.2%}")

The annualized information ratio is -3.48%

Plotting

- Plot the compound returns $(1+r_1)(1+r_2)\cdots(r+r_n)$
- Plot the compounded beta-adjusted benchmark returns
- Plot the compounded active returns
- Gives a visual of whether returns were earned from the benchmark or from active return.

```
In [12]: beta = result.params["mkt_rf"]
beta_adjusted_bmark = beta*df.mkt + (1-beta)*df.rf
active = df.ret - beta_adjusted_bmark
    (1+df.ret).cumprod().plot(label="total return", logy=True)
    (1+beta_adjusted_bmark).cumprod().plot(label="beta-adjusted benchmark", logy="
    (1+active).cumprod().plot(label="active return", logy=True)
    plt.legend()
```

plt.show()

 $\langle \rangle$

Attribution Analysis

Factors and attribution

- It is generally agreed that there are portfolio strategies ("factors" or "styles") that earn risk premia that are not explained by the CAPM.
 - Value, momentum, profitability, ...
- An institution evaluating a manager's results will look to see if any common factors are responsible for the results by running regressions on the benchmark and factors.
- In other words, we ask whether the returns can be attributed to common factors.

Alphas and information ratios again

- For simplicity, consider a single factor or style with return r_s . Suppose it is a longminus-short return.
- We run the regression

$$r-r_f=lpha+eta_1(r_b-r_f)+eta_2r_s+arepsilon$$

• We can rearrange as

$$r-\left[eta_1r_b+(1-eta_1)r_f+eta_2r_s
ight]=lpha+arepsilon$$

- The return in square braces is a beta and factor adjusted benchmark.
- The alpha and the information ratio have the same meaning as before, except that now we are also adjusting for factor exposure.

Data

- Fama-French factors
 - SMB = small minus big (size factor)
 - HML = high book-to-market minus low book-to-market (value factor)
 - CMA = conservative minus agressive (investment rate factor)
 - RMW = robust minus weak (profitability factor)
- Momentum
 - UMD = up minus down
- All from French's data library

In [13]:	fama_	_french	head	(3))
----------	-------	---------	------	-----	---

_ _ _

Out[13]:		Mkt-RF	SMB	HML	RMW	СМА	RF
	Date						
	1970-01	-0.0810	0.0312	0.0313	-0.0172	0.0384	0.0060
	1970-02	0.0513	-0.0276	0.0393	-0.0229	0.0276	0.0062
	1970-03	-0.0106	-0.0241	0.0399	-0.0100	0.0429	0.0057

In [14]: umd = pdr("F-F_Momentum_Factor", "famafrench", start=1970)[0]/100 umd.columns = ["UMD"] umd.head(3)

Out[14]: UMD Date 1970-01 0.0060 1970-02 0.0023 1970-03 -0.0036 In [15]: data = pd.concat((fama_french, umd, df), axis=1).dropna()
result = smf.ols("ret_rf ~ mkt_rf + SMB + HML + RMW + CMA + UMD", data).fit()
result.summary()

\cap	rtt.	Γ1	5	•
υı	I C	լ+	·	•

OLS Regression Results

Dep. Variable:			ret_rf	F	d:	0.854		
Model:		OLS		Adj. F	d:	0.852		
n	Method:		quares		ic:	502.5		
	Date: M	on, 27 No	ov 2023	Prob (F	:): 4.68	e-212		
	Time:	1	3:54:11	Log-L	.ikelihoo	d: 1	298.6	
No. Obser	vations:		524 AIC :			C : -	-2583.	
Df Re	siduals:	517 BI			C: -	2553.		
Df	Model:		6					
Covarian	ce Type:	nor	nrobust					
	coef	std err	t	P> t	[0.025	0.975]	_	
Intercept	-9.048e-05	0.001	-0.096	0.924	-0.002	0.002		
mkt_rf	1.0729	0.022	48.365	0.000	1.029	1.116	-	
SMB	-0.0638	0.034	-1.860	0.063	-0.131	0.004		
HML	-0.0509	0.041	-1.229	0.220	-0.132	0.030	_	
RMW	0.0332	0.043	0.778	0.437	-0.051	0.117	_	