Evaluating Past Returns

More Machine Learning
Kerry Back, JGSB, Rice University

Co Open in Colab

Outline

1. Evaluating without benchmarking - Sharpe ratios and drawdowns
2. Naive benchmarking
3. Benchmarking - alphas and information ratios
4. Attribution analysis - alphas and betas and information ratios

Data

- Monthly FMAGX returns from Yahoo Finance (FMAGX = Fidelity Magellan)
- Market return from French's data library
- Fama-French factors and momentum from French's data library

Monthly returns

```
In [1]: import yfinance as yf
ticker = "FMAGX"
price = yf.download(ticker, start=1970)["Adj Close"]
price_monthly = price.resample("M").last()
price_monthly.index = price_monthly.index.to_period("M")
return_monthly = price_monthly.pct_change().dropna()
```

[$* 100 \% \% *] ~ 1 ~ o f ~ 1 ~ c o m p l e t e d ~$

Monthly risk-free rates from French's data library

In [2]: from pandas_datareader import DataReader as pdr fama_french = pdr("F-F_Research_Data_5_Factors_2x3", "famafrench", start=1970 rf = fama_french["RF"]

Evaluating without benchmarking

Sharpe ratio

```
In [3]: import numpy as np
rprem = 12 * (return_monthly - rf).mean()
stdev = np.sqrt(12) * return_monthly.std()
sharpe = rprem / stdev
print(f"Annualized Sharpe ratio is {sharpe:.2%}")
Annualized Sharpe ratio is 46.21%
```


Drawdowns

- A drawdown is how much you've lost since the previous peak value.
- It's another way to represent risk.
- We'll use the daily price data.

```
In [4]: import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import seaborn as sns
sns.set_style("whitegrid")
colors = sns.color_palette()
```

In [5]: fig, ax = plt.subplots()
price_max = price.expanding().max()
drawdown = 100 * (price - price_max) / price_max
drawdown.plot(ax=ax)
ax.yaxis.set_major_formatter(mtick.PercentFormatter())
plt.show()


```
In [6]: fig, ax1 = plt.subplots()
```

ax2 = ax1.twinx()
ax2.set_yscale("log")
drawdown.plot(ax=ax1)
cumulative_return = price / price.iloc[0]
cumulative_return.plot(ax=ax2, c=colors[1])
ax1.set_xlabel('Date')
ax1.set_ylabel('Drawdown', color=colors[0])
ax2.set_ylabel('Cumulative return (log scale)', color=colors[1])
ax1.yaxis.set_major_formatter(mtick.PercentFormatter())
plt.show()

Naive Benchmarking

- Did you beat the benchmark?
- Compute returns in excess of the benchmark and the mean excess return.
- How risky are these excess returns?
- The standard deviation of return in excess of the benchmark is called tracking error.
- Reward to risk ratio = mean excess return / tracking error
- Naive = "don't adjust for beta"

Market return

```
In [7]: mkt = fama_french["Mkt-RF"] + fama_french["RF"]
```


Mean, risk (tracking error) and reward-to-risk

In [8]: mean $=12$ * (return_monthly - mkt).mean()

```
track_error = np.sqrt(12) * (return_monthly - mkt).std()
```

reward_to_risk = mean / stdev
print(f"annualized mean return in excess of market is \{mean:.2\%\}")
print(f"annualized tracking error is \{track_error:.2\%\}")
print(f"annualized reward-to-risk ratio is \{reward_to_risk:.2\%\}")
annualized mean return in excess of market is 0.37%
annualized tracking error is 7.29\%
annualized reward-to-risk ratio is 2.02\%

Benchmarking

Alpha

- Run the regression

$$
r-r_{f}=\alpha+\beta\left(r_{b}-r f\right)+\varepsilon
$$

- where $r_{b}=$ benchmark return
- Rearrange:

$$
r-\left[\beta \bar{r}_{b}+(1-\beta) r_{f}\right]=\alpha+\varepsilon
$$

- So, $\alpha+\varepsilon$ is the excess return over a beta-adjusted benchmark. It is called the active return.
- The beta-adjusted benchmark $\beta \bar{r}_{b}+(1-\beta) r_{f}$ has the same beta as r.
- α is the mean active return.

Alpha and mean-variance efficiency

- We can improve on a benchmark by adding some of another return r if and only if its alpha relative to the benchmark is positive.
- We can improve by shorting r if its alpha is negative.
- Cannot improve on benchmark $\Leftrightarrow \alpha=0$

Information ratio

- The risk of the active return is the risk of the regression residual ε
- Reward to risk ratio $\alpha /$ std dev of ε is called the information ratio.
- Information ratio is the most important statistic for evaluating performance relative to a benchmark.

Code

- Use statsmodels ols function to run regressions in python.
- Define model and fit.
- Fitted object has .summary() method, .params attribute and others.
- Residual standard deviation is square root of .mse_resid
- We'll use the market as the benchmark

In [9]: import pandas as pd
import statsmodels.formula.api as smf
df = pd.concat((return_monthly, mkt, rf), axis=1).dropna()
df.columns = ["ret", "mkt", "rf"]
$d f\left[\left[" r e t _r f ", ~ " m k t _r f "\right]\right]=d f[[" r e t ", ~ " m k t "]] . s u b t r a c t(d f . r f, a x i s=0)$
result = smf.ols("ret_rf ~ mkt_rf", df).fit()

```
In [10]: result.summary()
```

Out[10]:	OLS Regression Results						
	Dep. Variable:		ret_rf		R-squ	ared:	0.847
	Model:		OLS	Ad	R-sq	ared:	0.847
	Method:	Least Squares		F-statistic:			2892.
	Date: Mon, 27 Nov 2023			Prob (F-statistic):			5.26e-215
	Time:		13:54:10	Log-Likelihood:			1287.2
	No. Observations:	524				AIC:	-2570.
	Df Residuals:	522				BIC:	-2562.
	Df Model:	1					
	Covariance Type:coef	nonrobust			[0.025	0.975]	
		std err	t	$P>\|t\|$			
	Intercept -0.0002	20.001	-0.227	0.820	-0.002	0.002	
	mkt_rf 1.0765	50.020	53.774	0.000	1.037	1.116	
	Omnibus: 6	642.619	Durbin-V	Watson		2.069	
	Prob(Omnibus):	0.000	Jarque-Be	era (JB)	1188	29.986	
	Skew:	-5.621		rob(JB)		0.00	
	Kurtosis:	75.912		nd. No		22.0	

```
In [11]: alpha = 12 * result.params["Intercept"]
resid_stdev = np.sqrt(12 * result.mse_resid)
info_ratio = alpha / resid_stdev
print(f"The annualized information ratio is {info_ratio:.2%}")
The annualized information ratio is -3.48\%
```


Plotting

- Plot the compound returns $\left(1+r_{1}\right)\left(1+r_{2}\right) \cdots\left(r+r_{n}\right)$
- Plot the compounded beta-adjusted benchmark returns
- Plot the compounded active returns
- Gives a visual of whether returns were earned from the benchmark or from active return.

In [12]: beta = result.params["mkt_rf"]
beta_adjusted_bmark = beta*df.mkt + (1-beta)*df.rf
active = df.ret - beta_adjusted_bmark
(1+df.ret).cumprod().plot(label="total return", logy=True)
(1+beta_adjusted_bmark).cumprod().plot(label="beta-adjusted benchmark", logy=' (1+active).cumprod().plot(label="active return", logy=True)
plt.legend()
plt.show()

Attribution Analysis

Factors and attribution

- It is generally agreed that there are portfolio strategies ("factors" or "styles") that earn risk premia that are not explained by the CAPM.
- Value, momentum, profitability, ...
- An institution evaluating a manager's results will look to see if any common factors are responsible for the results by running regressions on the benchmark and factors.
- In other words, we ask whether the returns can be attributed to common factors.

Alphas and information ratios again

- For simplicity, consider a single factor or style with return r_{s}. Suppose it is a long-minus-short return.
- We run the regression

$$
r-r_{f}=\alpha+\beta_{1}\left(r_{b}-r_{f}\right)+\beta_{2} r_{s}+\varepsilon
$$

- We can rearrange as

$$
r-\left[\beta_{1} r_{b}+\left(1-\beta_{1}\right) r_{f}+\beta_{2} r_{s}\right]=\alpha+\varepsilon
$$

- The return in square braces is a beta and factor adjusted benchmark.
- The alpha and the information ratio have the same meaning as before, except that now we are also adjusting for factor exposure.

Data

- Fama-French factors
- $\mathrm{SMB}=$ small minus big (size factor)
- HML = high book-to-market minus low book-to-market (value factor)
- CMA = conservative minus agressive (investment rate factor)
- RMW = robust minus weak (profitability factor)
- Momentum
- UMD = up minus down
- All from French's data library

In [13]:	fama_french.head(3)						
Out[13]:		Mkt-RF	SMB	HML	RMW	CMA	RF
	Date						
	1970-01	-0.0810	0.0312	0.0313	-0.0172	0.0384	0.0060
	1970-02	0.0513	-0.0276	0.0393	-0.0229	0.0276	0.0062
	1970-03	-0.0106	-0.0241	0.0399	-0.0100	0.0429	0.0057

In [14]: umd = pdr("F-F_Momentum_Factor", "famafrench", start=1970)[0]/100
umd.columns = ["UMD"]
umd.head(3)

Out[14]: | | UMD |
| ---: | ---: |
| | Date |
| | 1970-01 |
| | 0.0060 |
| $1970-02$ | 0.0023 |
| $1970-03$ | -0.0036 |

In [15]: data = pd.concat((fama_french, umd, df), axis=1).dropna()
result = smf.ols("ret_rf ~ mkt_rf + SMB + HML + RMW + CMA + UMD", data).fit() result.summary()

Out[15]:
OLS Regression Results

