Pairs Trading

MGMT 638: Data-Driven Investments: Equity

Kerry Back, Rice University

Overview

- Find stock pairs that usually track together
- When the relationship is broken:
 - Buy the stock that is cheap compared to the usual relationship
 - Short sell the stock that is expensive compared to the usual relationship
- Hope the usual relationship is restored soon.

Model

- $P_1/P_2 \approx {
 m constant}$
- When the ratio goes above the constant, it tends to come down.
- When the ratio goes below the constant, it tends to go up.

$$\Delta P_1/P_2 = egin{cases} + ext{ when } P_1/P_2 < ext{constant} \ - ext{ when } P_1/P_2 > ext{constant} \ - ext{when } P_1/P_2 > ext{constant} \end{cases}$$

-Assume the change is larger when the ratio is further from the constant as

$$\Delta P_1/P_2 = k(ext{constant} - P_1/P_2)$$

for a constant k > 0.

• The model is equivalent to

$$\Delta P_1/P_2 = a + bP_1/P_2$$

where $a = k \times \text{constant}$, b = -k.

- Estimate *a* and *b* by linear regression.
- Should get a > 0, b < 0.
- If so, $\mathrm{constant} = -a/b$.
- Hold asset 1 and short 2 when $P_1/P_2 < -a/b {
 m threshold.}$
- Hold asset 2 and short 1 when $P_1/P_2 > -a/b + {
 m threshold.}$

Example

- Chevron (CVX) and Conoco-Phillips (COP) from 2000 on
- Adjusted closing prices from Yahoo Finance
- Compute the price ratio: CVX / COP

```
In [2]: data.ratio.plot(label="CVX/COP")
plt.hlines(
    y=-a/b,
    xmin = data.index[0],
    xmax=data.index[-1],
    color="red",
    label="constant"
    )
    plt.legend(loc="lower right")
    plt.show()
```


 $\langle \rangle$

Returns

- -a/b = 1.66
- Set threshold = 0.2 as an example
- Buy COP and short CVX when CVX / COP is above 1.86
- Buy CVX and short COP when CVX / COP is below 1.46

Market Neutrality

- The pairs strategy is an example of a market neutral strategy, meaning its market beta should be approximately zero.
- If it has a return above the risk-free rate, then adding some of it to the market portfolio can improve performance relative to holding the market.
- This is the same as saying that the strategy has a positive alpha.
- It is also the same as saying

 $Sharpe\ ratio\ of\ strategy > Sharpe\ ratio\ of\ market \times correlation\ with\ market$

• Get the market return from Ken French's data library.

In [4]: print(f"mean return of pairs strategy = {252*data.ret.mean():.2%} annualized"
 print(f"correlation of pairs strategy with market = {data.ret.corr(data.mkt):

mean return of pairs strategy = 5.19% annualized correlation of pairs strategy with market = 4.94%

Avoid Look-Ahead Bias

- Compute the parameter of the strategy (the constant -a/b) from data through 2015
- Test the strategy from 2015 on.

In [7]: print(f"mean return of pairs strategy = {252*future.ret.mean():.2%} annualize
print(f"correlation of pairs strategy with market = {future.ret.corr(future.m

mean return of pairs strategy = 5.48% annualized correlation of pairs strategy with market = 10.74%

Alpha and Beta

- beta = corr with market excess return x std dev of strategy / std dev of market
- alpha = mean return beta * mean market excess return

```
In [8]: beta = future.ret.corr(future.mkt) * future.ret.std() / future.mkt.std()
alpha = future.ret.mean() - beta * future.mkt.mean()
```

```
print(f"beta is {beta:.4f}")
print(f"annualized alpha is {252*alpha:.2%}")
```

```
beta is 0.0011
annualized alpha is 4.19%
```

Regressions in python

- use statsmodels.formula.api
- smf.ols("model", data).fit().summary()

In [9]: import statsmodels.formula.api as smf
smf.ols("ret~mkt", future).fit().summary()

Kurtosis:

14.305

Out[9]:	OLS Regression Results							
	Dep. Variable:		ret		et	R-squared:		0.012
	Model:		OLS		S Ad	Adj. R-squared:		0.011
	Method:		Leas	Least Squares		F-st	25.15	
	Date:		Sat, 28 Oct 2023		3 Pro l	Prob (F-statistic):		5.75e-07
	Time: No. Observations:			11:42:1	11:42:18 Log-Likeli			6431.3
				2157			AIC:	-1.286e+04
	Df Re	esiduals:		2155			BIC:	-1.285e+04
	Df Model:		1					
	Covarian	ce Type:	nonrobust					
	coef		std err	t	P> t	[0.02	5 0.97	5]
	Intercept	0.0002	0.000	0.758	0.448	-0.00	0.00)1
	mkt	0.0011	0.000	5.015	0.000	0.00	1 0.00)2
	Omnibus: 4		438.977	3.977 Durbin-Watsor			1.95	1
	Prob(Omnibus):		0.000	Jarque-Bera (JB):		JB): 1	1512.64	C
	Skew:		0.267	Prob(JB):			0.0	0

Cond. No.

1.20