Course Overview and Moving Averages

MGMT 638: Data-Driven Investments: Equity
Kerry Back, Rice University

Course goals

- Get exposure to quantitative investment strategies
- Learn the types of risk adjustments people do to analyze all investment strategies information ratios, attribution analysis, ...
- Learn to execute python code to backtest and analyze strategies

I am not promising you will be proficient at writing python code by the end of the course, but ChatGPT can help.

Course materials

- Slides, assignments, and links to notebooks at mgmt638.kerryback.com
- Submit assignments on Canvas
- Three versions of slides: html, pdf, and Jupyter notebook
- The notebook is more inclusive. It contains all of the code to do all of the analysis that is presented in the html and pdf slides.
- Notebooks are set to open on Google Colab.

Grading

- Grades will be based on individual weekly assignments (80\%) and class participation (20\%).
- We will do work similar to the assignments in class each week, so there will be an opportunity for coaching.

Predictors

- Past prices
- moving averages, support and resistance, ...
- momentum and reversals
- pairs trading (error correction)
- Corporate fundamentals: ratios and growth rates
- Corporate actions (earnings, dividends, 8 ks)
- Corporate insider trades
- Other trades - institutional, retail, short selling
- Social media sentiment
- Proprietary data (satellite images, phone location data, ...)

Backtesting

- Idea + data \rightarrow backtest
- Can we reasonably backtest the strategy "buy electric car companies whose name starts with T?"
- We can backtest a more general strategy with two parameters: type of company, first letter of name
- We can backtest in a loop, updating once per year for example:
- Find the type of company and the first letter of name that did best in the past n years
- Buy that company and hold for a year
- Update each year: find the new best company/first letter and hold it for a year

Tests and other considerations

- Past average return
- Sharpe ratio
- CAPM alpha and information ratio
- Fama-French alpha and information ratio
- Attribution analysis
- Maximum drawdown
- Tracking error relative to a benchmark
- Correlation with other strategies
- Turnover and ransactions costs (including shorting fees)

Universe of stocks

- Large cap or small cap or mid cap or some of all?
- Industries: do we want to bet on industries or match industry weights to a benchmark?
- Value vs growth, etc.
- Our goal could be to find the best possible strategy without any constraints or we might be constrained to find the best strategy within mid-cap energy, for example.
- Different strategies may work better or worse depending on the universe of stocks we can consider.

Example for today

- Do moving average strategies work?
- Get adjusted closing prices from Yahoo Finance
- Adjusted for splits and dividends
- \% change is total return, including dividends

```
In [2]: data.head()
Out[2]:
    closeadj
    Date
    2010-06-29 1.592667
    2010-06-30 1.588667
    2010-07-01 1.464000
    2010-07-02 1.280000
    2010-07-06 1.074000
```


Compute and plot moving averages

- Compute average of adjusted closing price over prior n days
- Do 10 day and 50 day as illustration
- Plot from 2020 on only so we can see detail better

In [4]: _ = data[["ten", "fifty"]].loc["2020-01-01":].plot()

Compute returns

- Buy and hold return = percent change in adjusted closing price
- Moving average strategy:
- Long all money in account when 10 day > 50 day
- Zero position (and no interest for simplicity) otherwise

What tests do we want to do?

- Start by calculating average returns - multiply by 252 to annualize
- Then look at plot of compound returns - log scale works better for long time period
- Compute Sharpe ratios
- CAPM alphas, ...

Mean returns

In [7]: buy_hold = 252*data.buy_hold.mean()
mvg_avg = 252*data.mvg_avg.mean()
print(f"buy and hold mean return is \{buy_hold:.2\%\} annualized")
print(f"moving average mean return is \{mvg_avg:.2\%\} annualized")
buy and hold mean return is 54.43% annualized moving average mean return is 37.46% annualized

Compound return plots

- We will plot the compound return (how much your money grows to starting from \$1).
- First in a normal scale and then in a log scale.

In [8]:

```
_ = (1+data[["buy_hold", "mvg_avg"]]).cumprod().plot()
```


In [9]: _ = (1+data[["buy_hold", "mvg_avg"]]).cumprod().plot(logy=True
)

Sharpe ratios

- Sharpe ratio is expected return minus risk-free rate / standard deviation
- We'll skip the risk-free rate
- Annualize mean return by multiplying by 252
- Annualize variance by multiplying by 252
- \Rightarrow annualize standard deviation by multiplying by $\sqrt{252}$
- \Rightarrow annualize Sharpe ratio by multiplying by $\sqrt{252}$

In [11]: print(f"Buy and hold Sharpe ratio is \{buy_hold_sharpe:.2\%\} annualized") print(f"Moving average Sharpe ratio is \{mvg_avg_sharpe:.2\%\} annualized")

Buy and hold Sharpe ratio is 95.92\% annualized
Moving average Sharpe ratio is 88.76% annualized

Multiple stocks

- We can get data for multiple stocks from Yahoo Finance by passing a list of tickers.
- Here is an example.

In [13]: data.head(7)

Out[13]: | | | closeadj | | |
| ---: | ---: | ---: | :---: | :---: |
| | date | | | ticker |
| 2000-01-03 | CVX | 17.508469 | | |
| | F | 13.405162 | | |
| | MSFT | 36.205597 | | |
| | PG | 28.428749 | | |
| | WMT | 43.717701 | | |
| 2000-01-04 | CVX | 17.508469 | | |
| | F | 12.957256 | | |

- Then we can do everything we did for a single ticker by running the code in a groupby object.
- Portfolio returns:
- Instead of looking at returns for each stock individually, we can compare portfolios.
- We will equal weight each day for simplicity.
- Neither of the strategies is buy and hold - we have to trade each day to get back to equal weights.
- For the moving average strategy, we will equal weight the stocks for which the 10 day > 50 day moving average (which could be no stocks or all stocks or anything in between).

In [16]: rets.head()
Out[16]:
eq_wtd mvg_avg
date

2000-01-03	NaN	0.0
2000-01-04	-0.024771	0.0
2000-01-05	-0.001449	0.0
2000-01-06	0.013458	0.0
$2000-\mathbf{0 1 - 0 7}$	0.051980	0.0

```
In [17]: rets.tail()
Out[17]: eq_wtd mvg_avg
    date
    2023-10-16 0.010296 0.004630
    2023-10-17 0.004664 0.002299
    2023-10-18 0.000899 0.000413
    2023-10-19 -0.004877 0.000946
    2023-10-20 -0.006354 -0.005492
```

Mean returns

In [18]: eq_wtd $=252 *$ rets.eq_wtd.mean()
mvg_avg $=252$ *rets.mvg_avg.mean()
print(f"equally weighted mean return is \{eq_wtd:.2\%\} annualized") print(f"moving average mean return is \{mvg_avg:.2\%\} annualized")
equally weighted mean return is 10.60% annualized moving average mean return is 5.65% annualized

Compound returns
In [19]: _ = (1+rets).cumprod().plot()

In [20]:

```
_ = (1+rets).cumprod().plot(logy=True)
```


Sharpe ratios

In [22]: print(f"Equally weighted Sharpe ratio is \{eq_wtd_sharpe:.2\%\} annualized") print(f"Moving average Sharpe ratio is \{mvg_avg_sharpe:.2\%\} annualized")

Equally weighted Sharpe ratio is 35.35% annualized Moving average Sharpe ratio is 29.48% annualized

Exercise

Look at different sets of stocks and different moving averages and test strategies.

