
Course Overview and
Moving Averages
MGMT 638: Data-Driven Investments: Equity
Kerry Back, Rice University

Course goals
Get exposure to quantitative investment strategies
Learn the types of risk adjustments people do to analyze all investment strategies -
information ratios, attribution analysis, ...
Learn to execute python code to backtest and analyze strategies

I am not promising you will be proficient at writing python code by the end of the
course, but ChatGPT can help.

Course materials
Slides, assignments, and links to notebooks at mgmt638.kerryback.com
Submit assignments on Canvas
Three versions of slides: html, pdf, and Jupyter notebook
The notebook is more inclusive. It contains all of the code to do all of the analysis
that is presented in the html and pdf slides.
Notebooks are set to open on Google Colab.

Grading
Grades will be based on individual weekly assignments (80%) and class
participation (20%).
We will do work similar to the assignments in class each week, so there will be an
opportunity for coaching.

Predictors
Past prices

moving averages, support and resistance, ...
momentum and reversals
pairs trading (error correction)

Corporate fundamentals: ratios and growth rates
Corporate actions (earnings, dividends, 8ks)
Corporate insider trades
Other trades - institutional, retail, short selling
Social media sentiment
Proprietary data (satellite images, phone location data, ...)

Backtesting
Idea + data backtest
Can we reasonably backtest the strategy "buy electric car companies whose name
starts with T?"
We can backtest a more general strategy with two parameters: type of company,
first letter of name
We can backtest in a loop, updating once per year for example:

Find the type of company and the first letter of name that did best in the
past years
Buy that company and hold for a year
Update each year: find the new best company/first letter and hold it for a
year

→

n

Tests and other considerations
Past average return
Sharpe ratio
CAPM alpha and information ratio
Fama-French alpha and information ratio
Attribution analysis
Maximum drawdown
Tracking error relative to a benchmark
Correlation with other strategies
Turnover and ransactions costs (including shorting fees)

Universe of stocks
Large cap or small cap or mid cap or some of all?
Industries: do we want to bet on industries or match industry weights to a
benchmark?
Value vs growth, etc.
Our goal could be to find the best possible strategy without any constraints or we
might be constrained to find the best strategy within mid-cap energy, for example.
Different strategies may work better or worse depending on the universe of stocks
we can consider.

Example for today
Do moving average strategies work?
Get adjusted closing prices from Yahoo Finance
Adjusted for splits and dividends
% change is total return, including dividends

closeadj

Date

2010-06-29 1.592667

2010-06-30 1.588667

2010-07-01 1.464000

2010-07-02 1.280000

2010-07-06 1.074000

In [2]: data.head()

Out[2]:

Compute and plot moving averages
Compute average of adjusted closing price over prior days
Do 10 day and 50 day as illustration
Plot from 2020 on only so we can see detail better

n

In [4]: _ = data[["ten", "fifty"]].loc["2020-01-01":].plot()

Compute returns
Buy and hold return = percent change in adjusted closing price
Moving average strategy:

Long all money in account when 10 day > 50 day
Zero position (and no interest for simplicity) otherwise

closeadj ten fifty buy_hold long mvg_avg

Date

2010-09-09 1.381 1.351 1.322 -0.009 True -0.009

2010-09-10 1.345 1.357 1.318 -0.026 True -0.026

2010-09-13 1.381 1.360 1.313 0.027 True 0.027

2010-09-14 1.408 1.366 1.311 0.019 True 0.019

2010-09-15 1.465 1.375 1.314 0.041 True 0.041

In [6]: data.head()

Out[6]:

What tests do we want to do?
Start by calculating average returns - multiply by 252 to annualize
Then look at plot of compound returns - log scale works better for long time
period
Compute Sharpe ratios
CAPM alphas, ...

Mean returns

In [7]: buy_hold = 252*data.buy_hold.mean()
mvg_avg = 252*data.mvg_avg.mean()

print(f"buy and hold mean return is {buy_hold:.2%} annualized")
print(f"moving average mean return is {mvg_avg:.2%} annualized")

buy and hold mean return is 54.43% annualized
moving average mean return is 37.46% annualized

Compound return plots
We will plot the compound return (how much your money grows to starting from
$1).
First in a normal scale and then in a log scale.

In [8]: _ = (1+data[["buy_hold", "mvg_avg"]]).cumprod().plot()

In [9]: _ = (1+data[["buy_hold", "mvg_avg"]]).cumprod().plot(
 logy=True
)

Sharpe ratios
Sharpe ratio is expected return minus risk-free rate / standard deviation
We'll skip the risk-free rate
Annualize mean return by multiplying by
Annualize variance by multiplying by

 annualize standard deviation by multiplying by
 annualize Sharpe ratio by multiplying by

252

252

⇒ √252

⇒ √252

In [11]: print(f"Buy and hold Sharpe ratio is {buy_hold_sharpe:.2%} annualized")
print(f"Moving average Sharpe ratio is {mvg_avg_sharpe:.2%} annualized")

Buy and hold Sharpe ratio is 95.92% annualized
Moving average Sharpe ratio is 88.76% annualized

Multiple stocks
We can get data for multiple stocks from Yahoo Finance by passing a list of tickers.
Here is an example.

closeadj

date ticker

2000-01-03 CVX 17.508469

F 13.405162

MSFT 36.205597

PG 28.428749

WMT 43.717701

2000-01-04 CVX 17.508469

F 12.957256

In [13]: data.head(7)

Out[13]:

Then we can do everything we did for a single ticker by running the code in a
groupby object.
Portfolio returns:

Instead of looking at returns for each stock individually, we can compare
portfolios.
We will equal weight each day for simplicity.
Neither of the strategies is buy and hold - we have to trade each day to
get back to equal weights.
For the moving average strategy, we will equal weight the stocks for
which the 10 day > 50 day moving average (which could be no stocks or
all stocks or anything in between).

eq_wtd mvg_avg

date

2000-01-03 NaN 0.0

2000-01-04 -0.024771 0.0

2000-01-05 -0.001449 0.0

2000-01-06 0.013458 0.0

2000-01-07 0.051980 0.0

In [16]: rets.head()

Out[16]:

eq_wtd mvg_avg

date

2023-10-16 0.010296 0.004630

2023-10-17 0.004664 0.002299

2023-10-18 0.000899 0.000413

2023-10-19 -0.004877 0.000946

2023-10-20 -0.006354 -0.005492

In [17]: rets.tail()

Out[17]:

Mean returns

In [18]: eq_wtd = 252*rets.eq_wtd.mean()
mvg_avg = 252*rets.mvg_avg.mean()

print(f"equally weighted mean return is {eq_wtd:.2%} annualized")
print(f"moving average mean return is {mvg_avg:.2%} annualized")

equally weighted mean return is 10.60% annualized
moving average mean return is 5.65% annualized

Compound returns

In [19]: _ = (1+rets).cumprod().plot()

In [20]: _ = (1+rets).cumprod().plot(logy=True)

Sharpe ratios

In [22]: print(f"Equally weighted Sharpe ratio is {eq_wtd_sharpe:.2%} annualized")
print(f"Moving average Sharpe ratio is {mvg_avg_sharpe:.2%} annualized")

Equally weighted Sharpe ratio is 35.35% annualized
Moving average Sharpe ratio is 29.48% annualized

Exercise
Look at different sets of stocks and different moving averages and test strategies.

